
WireGuard
A next generation VPN tunnel

PRESENTED BY QINGWEI “VINCENT” ZHANG

MARCH 7, 2019.

OTTAWA CANADA LINUX USER GROUP.

Who am I

 Qingwei Zhang, a software development engineer with 5 years of
experience in high technology and finance.

 A previous small business entrepreneurs

 Background in computer networks

 Motivated to introduce a VPN that avoids the problems in both crypto and
implementation

What is WireGuard?

 Layer 3 secure network tunnel for IPv4 and IPv6.

 Designed for the Linux kernel

 Slower cross platform implementations.

 UDP-based. Punches through firewalls.

 Modern conservative cryptographic principles.

 Emphasis on simplicity and auditability.

 Authentication model similar to SSH’s ./.ssh/authenticated_keys.

 Replacement for OpenVPN and IPsec.

 Grew out of a stealth rootkit project.

Security Design Principle 1: Easily
Auditable

OpenVPN

Linux XFRM

StrongSwan

SoftEther

WireGuard

116,730 LoC
Plus OpenSSL!

119,363 LoC
Plus
StrongSwan!

405,894 LoC
Plus XFRM!

329,853 LoC

3,771 LoC

Security Design Principle 1: Easily
Auditable

IPsec
(XFRM+Strongswan)

419,792 LoC

SoftEther
329,853LoC

OpenVPN
119,363
LoC

WireGuard
3771 LoC

Security Design Principle 2:
Simplicity of Interface

 WireGuard presents a normal network interface:

iplink add wg0 type WireGuard

ipaddress add 192.168.3.2/24 dev wg0

iproute add default via wg0

ifconfig wg0 …

iptables–A INPUT -iwg0 …

/etc/hosts.{allow,deny}, bind(), …

 Everything that ordinarily builds on top of network interfaces –like eth0or wlan0–can
build on top of wg0.

Cryptokey Routing

 The fundamental concept of any VPN is an

association between public keys of peers and
the IP addresses that those peers are allowed
to use.

 A WireGuard interface has:
 A private key

 A listening UDP port

 A list of peers

 A peer:
 Is identified by its public key

 Has a list of associated tunnel IPs

 Optionally has an endpoint IP and port

Cryptokey Routing
PUBLIC KEY :: IP ADDRESS

CryptokeyRouting

 Server Configure

[Interface]

PrivateKey= yAnz5TF+lXXJte14tji3zlMNq+hd2rYUIgJBgB3fBmk=

ListenPort= 41414

[Peer]

PublicKey= xTIBA5rboUvnH4htodjb6e697QjLERt1NAB4mZqp8Dg=

AllowedIPs= 10.192.122.3/32,10.192.124.1/24

[Peer]

PublicKey= TrMvSoP4jYQlY6RIzBgbssQqY3vxI2Pi+y71lOWWXX0=

AllowedIPs= 10.192.122.4/32,192.168.0.0/16

 Client Configure

[Interface]

PrivateKey= gI6EdUSYvn8ugXOt8QQD6Yc+JyiZxIhp3GInSWRfWGE=

ListenPort= 21841

[Peer]

PublicKey=
HIgo9xNzJMWLKASShiTqIybxZ0U3wGLiUeJ1PKf8ykw=Endpoint =
192.95.5.69:41414

AllowedIPs= 0.0.0.0/0

Cryptokey Routing

Userspace:
send(packet)

Linux kernel:
Ordinary

routing table
→ wg0

WireGuard:
Destination IP

address →
which peer

WireGuard:
encrypt(packet)
send(encrypted)

→ peer’s
endpoint

WireGuard:
recv(encrypte

d)

WireGuard:
decrypt(packe

t) → which
peer

WireGuard:
Source IP

address ←→
peer’s allowed

IPs

Linux:
Hand packet

to networking
stack

Cryptokey Routing

Makes system administration very simple.

 If it comes from interface wg0 and is from
your friends Bob’ tunnel IP address of
192.168.5.17, then the packet definitely came
from Bob.

The iptables rules are plain and clear

Timers: A Stateless Interface for a
Stateful Protocol

As mentioned prior, WireGuard appears “stateless” to
user space; you set up your peers, and then it just
works.

A series of timers manages session state internally,
invisible to the user.

 Every transition of the state machine has been
accounted for, so there are no undefined states or
transitions.

 Event based.

Timers

• If no session has been established for 120 seconds,send
handshake initiation. User space sends packet.

• Resend handshake initiation. No handshake response after
5 seconds.

• Send an encrypted empty packet after 10 seconds, if we
don’t have anything else to send during that time.

Successful authentication of
incoming packet.

• Send handshake initiation.
No successfully authenticated

incoming packets after 15
seconds.

Security Design Principle 2: Simplicity
of Interface

 The interface appears stateless to the system administrator.

 Add an interface – wg0, wg1, wg2, … – configure its peers,
and immediately packets can be sent.

 If it’s not set up correctly, most of the time it will just refuse to
work, rather than running insecurely: fails safe, rather than
fails open.

 Endpoints roam, like in mosh.

 Identities are just the static public keys, just like SSH.
Everything else, like session state, connections, and so forth, is
invisible to admin.

Demo

Simple Composable Tools

 Since wg(8) is a very simple tool, that works
with ip(8), other more complicated tools can be
built on top.

 Integration into various network managers:

 OpenWRT

 OpenRC netifrc

 NixOS

 systemd-networkd

 LinuxKit

 Ubiquiti’s EdgeOS

 NetworkManager

Simple Composable Tools: wg-quick

 Simple shell script

wg-quick up vpn0

wg-quick down vpn0

 /etc/wireguard/vpn0.conf:

[Interface] Address = 10.200.100.2 DNS = 10.200.100.1

PostDown = resolvconf -d %i

PrivateKey = uDmW0qECQZWPv4K83yg26b3L4r93HvLRcal997IGlEE=

[Peer]

PublicKey = +LRS63OXvyCoVDs1zmWRO/6gVkfQ/pTKEZvZ+CehO1E= AllowedIPs =
0.0.0.0/0

Endpoint = demo.wireguard.io:51820

Security Design Principle 3: Static Fixed
Length Headers

All packet headers have fixed width fields, so no
parsing is necessary.
 Eliminates an entire class of vulnerabilities.

 No parsers → no parser vulnerabilities.

 Quite a different approach to formats like
ASN.1/X.509 or even variable length IP and TCP
packet headers.

Security Design Principle 4: Static
Allocations and Guarded State

 All state required for WireGuard to work is allocated during config.

 No memory is dynamically allocated in response to received packets.

 Eliminates another entire classes of vulnerabilities.

 Places an unusual constraint on the crypto, since we are operating over a finite
amount of preallocated memory.

 No state is modified in response to unauthenticated packets.

 Eliminates yet another entire class of vulnerabilities.

 Also places unusual constraints on the crypto.

Security Design Principle 5: Stealth

 Some aspects of WireGuard grew out of akernel
rootkit project.

 Should not respond to any unauthenticated
packets.

 Hinder scanners and service discovery.

 Service only responds to packets with correct
crypto.

 Not chatty at all.

 When there’s no data to be exchanged, both
peers become silent.

Security Design Principle 6: Solid
Crypto

 We make use of Noise Protocol Framework – noiseprotocol.org

 WireGuard was involved early on with the design of Noise, ensuring it could do
what we needed.

 Custom written very specific implementation of Noise_IKpsk2 for the kernel.

 Related in spirit to the Signal Protocol.

 The usual list of modern desirable properties you’d want from an
authenticated key exchange

 Modern primitives: Curve25519, Blake2s, ChaCha20, Poly1305

 Lack of cipher agility! (Opinionated.)

Security Design Principle 6: Solid
Crypto

 Strong key agreement & authenticity

 Key-compromise impersonation resistance

 Unknown key-share attack resistance

 Key secrecy

 Forward secrecy

 Session uniqueness

 Identity hiding

 Replay-attack prevention, while allowing for
network packet reordering

Crypto Designed for Kernel

 Design goals of guarded memory safety, few allocations, etc have direct
effect on cryptography used.

 Ideally be 1-RTT.

 Fast crypto primitives.

 Clear division between slowpath for ECDH and fastpath for symmetric
crypto.

 Handshake in kernel space, instead of punted to userspace daemon like
IKE/IPsec.

 Allows for more efficient and less complex protocols.

 Exploit interactions between handshake state and packet encryption state.

Multicore Cryptography

 Encryption and decryption of
packets can be spread out to all
cores in parallel.

 Nonce/sequence number checking,
netif_rx, and transmission must be
done in serial order.

 Requirement: fast for single flow
traffic in addition to multiflow traffic.
 Different from usual assumptions.

Multicore Cryptography

 Single queue, shared by all CPUs, rather than queue per CPU

 No reliance on process scheduler, which tends to add latency when waiting for
packets to complete

 Serial transmission queue waits on ordered completion of parallel queue items

 Using netif_receive_skb instead of netif_rx to push back on encryption queue

 Bunching bundles of packets together to be encrypted on one CPU results
in high performance gains

 How to choose the size of the bundle?

Multicore Cryptography

Performance

Performance

 Being in kernel space means that it is fast and low latency.

 No need to copy packets twice between user space and kernel space.

 ChaCha20Poly1305 is extremely fast on nearly all hardware, and safe.
 AES-NI is fast too, obviously, but as Intel and ARM vector instructions become

wider and wider, ChaCha is handedly able to compete with AES-NI, and even
perform better in some cases.

 AES is exceedingly difficult to implement performantly and safely (no cache-timing
attacks) without specialized hardware.

 ChaCha20 can be implemented efficiently on nearly all general purpose processors.

 Simple design of WireGuard means less overhead, and thus better
performance.
 Less code → Faster program? Not always, but in this case, certainly.

Measurements

Confluence of Principles → The Key
Exchange

The Key Exchange

 The key exchange designed to keep our principles static allocations,
guarded state, fixed length headers, and stealthiness.

 In order for two peers to exchange data, they must first derive ephemeral
symmetric crypto session keys from their static public keys.

 Either side can reinitiate the handshake to derive new session keys.

 So initiator and responder can “swap” roles.

 Invalid handshake messages are ignored, maintaining stealth

The Key Exchange: (Elliptic Curve)
Diffie-Hellman Review

private A = random()

public A = derive_public(private A)

private B = random()

public B = derive_public(private B)

ECDH(private A, public B) == ECDH(private
B, public A)

