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Who am I   

 Qingwei Zhang, a software development engineer with 5 years of 
experience in high technology and finance. 

 A previous small business entrepreneurs 

 Background in computer networks 

 Motivated to introduce a VPN that avoids the problems in both crypto and 
implementation 

 



What is WireGuard? 
 

 Layer 3 secure network tunnel for IPv4 and IPv6. 

 Designed for the Linux kernel 

 Slower cross platform implementations. 

 UDP-based. Punches through firewalls. 

 Modern conservative cryptographic principles. 

 Emphasis on simplicity and auditability. 

 Authentication model similar to SSH’s ./.ssh/authenticated_keys. 

 Replacement for OpenVPN and IPsec. 

 Grew out of a stealth rootkit project. 

 



Security Design Principle 1: Easily 
Auditable 

OpenVPN  
 

Linux XFRM  
 

StrongSwan  
 

SoftEther  
 

WireGuard  
 

116,730 LoC  
Plus OpenSSL!
  
 

119,363 LoC 
Plus 
StrongSwan!  
 

405,894 LoC 
Plus XFRM!  
 

329,853 LoC  
 

3,771 LoC  
 



Security Design Principle 1: Easily 
Auditable 

 

IPsec 
(XFRM+Strongswan) 

419,792 LoC 

SoftEther 
329,853LoC 

OpenVPN 
119,363 
LoC 

WireGuard 
3771 LoC 



Security Design Principle 2: 
Simplicity of Interface 

 

 WireGuard presents a normal network interface: 

 

# iplink add wg0 type WireGuard 

# ipaddress add 192.168.3.2/24 dev wg0 

# iproute add default via wg0 

# ifconfig wg0 … 

# iptables–A INPUT -iwg0 … 

 

/etc/hosts.{allow,deny}, bind(), … 

 

 Everything that ordinarily builds on top of network interfaces –like eth0or wlan0–can 
build on top of wg0. 

 



Cryptokey Routing 

 
 The fundamental concept of any VPN is an 

association between public keys of peers and 
the IP addresses that those peers are allowed 
to use. 

 A WireGuard interface has: 
 A private key 

 A listening UDP port 

 A list of peers 

 A peer: 
 Is identified by its public key 

 Has a list of associated tunnel IPs 

 Optionally has an endpoint IP and port 

 



Cryptokey Routing 
PUBLIC KEY :: IP ADDRESS 



CryptokeyRouting 

 Server Configure 
 

[Interface] 

PrivateKey= yAnz5TF+lXXJte14tji3zlMNq+hd2rYUIgJBgB3fBmk= 

ListenPort= 41414 

 

[Peer] 

PublicKey= xTIBA5rboUvnH4htodjb6e697QjLERt1NAB4mZqp8Dg= 

AllowedIPs= 10.192.122.3/32,10.192.124.1/24 

 

[Peer] 

PublicKey= TrMvSoP4jYQlY6RIzBgbssQqY3vxI2Pi+y71lOWWXX0= 

AllowedIPs= 10.192.122.4/32,192.168.0.0/16 

 Client Configure 
 

[Interface] 

PrivateKey= gI6EdUSYvn8ugXOt8QQD6Yc+JyiZxIhp3GInSWRfWGE= 

ListenPort= 21841 

 

[Peer] 

PublicKey= 
HIgo9xNzJMWLKASShiTqIybxZ0U3wGLiUeJ1PKf8ykw=Endpoint = 
192.95.5.69:41414 

AllowedIPs= 0.0.0.0/0 



Cryptokey Routing 

Userspace:  
send(packet) 

Linux kernel:  
Ordinary 

routing table 
→ wg0 

WireGuard:  
Destination IP 

address → 
which peer 

WireGuard: 
encrypt(packet) 
send(encrypted) 

→ peer’s 
endpoint 

WireGuard: 
recv(encrypte

d)  

WireGuard: 
decrypt(packe

t) → which 
peer 

WireGuard:  
Source IP 

address ←→ 
peer’s allowed 

IPs  

Linux:  
Hand packet 

to networking 
stack 



Cryptokey Routing 

Makes system administration very simple.  

 If it comes from interface wg0 and is from 
your friends Bob’ tunnel IP address of 
192.168.5.17, then the packet definitely came 
from Bob.  

The iptables rules are plain and clear 



Timers: A Stateless Interface for a 
Stateful Protocol 

As mentioned prior, WireGuard appears “stateless” to 
user space; you set up your peers, and then it just 
works.  

A series of timers manages session state internally, 
invisible to the user.   

 Every transition of the state machine has been 
accounted for, so there are no undefined states or 
transitions.  

 Event based. 



Timers 

• If no session has been established for 120 seconds,send 
handshake initiation. User space sends packet.  

•  Resend handshake initiation.   No handshake response after 
5 seconds.  

• Send an encrypted empty packet after 10 seconds, if we 
don’t have anything else to send during that time. 

Successful authentication of 
incoming packet. 

• Send handshake initiation. 
No successfully authenticated 

incoming packets after 15 
seconds. 



Security Design Principle 2: Simplicity 
of Interface  

 The interface appears stateless to the system administrator.  

  Add an interface – wg0, wg1, wg2, … – configure its peers, 
and immediately packets can be sent.  

  If it’s not set up correctly, most of the time it will just refuse to 
work, rather than running insecurely: fails safe, rather than 
fails open.   

 Endpoints roam, like in mosh.  

  Identities are just the static public keys, just like SSH.  
Everything else, like session state, connections, and so forth, is 
invisible to admin. 



Demo 



Simple Composable Tools 

 Since wg(8) is a very simple tool, that works 
with ip(8), other more complicated tools can be 
built on top. 

 Integration into various network managers:  

  OpenWRT  

  OpenRC netifrc  

  NixOS  

  systemd-networkd  

  LinuxKit  

  Ubiquiti’s EdgeOS  

  NetworkManager 



Simple Composable Tools: wg-quick 

 Simple shell script  

# wg-quick up vpn0  

# wg-quick down vpn0  

 

 /etc/wireguard/vpn0.conf:  

[Interface] Address = 10.200.100.2 DNS = 10.200.100.1  

PostDown = resolvconf -d %i  

PrivateKey = uDmW0qECQZWPv4K83yg26b3L4r93HvLRcal997IGlEE=  

 

[Peer]  

PublicKey = +LRS63OXvyCoVDs1zmWRO/6gVkfQ/pTKEZvZ+CehO1E= AllowedIPs = 
0.0.0.0/0  

Endpoint = demo.wireguard.io:51820 



Security Design Principle 3: Static Fixed 
Length Headers 

All packet headers have fixed width fields, so no 
parsing is necessary. 
 Eliminates an entire class of vulnerabilities. 

 No parsers → no parser vulnerabilities. 

  Quite a different approach to formats like 
ASN.1/X.509 or even variable length IP and TCP 
packet headers. 



Security Design Principle 4: Static 
Allocations and Guarded State 

 

 All state required for WireGuard to work is allocated during config. 

  No memory is dynamically allocated in response to received packets. 

  Eliminates another entire classes of vulnerabilities. 

  Places an unusual constraint on the crypto, since we are operating over a finite 
amount of preallocated memory. 

  No state is modified in response to unauthenticated packets. 

  Eliminates yet another entire class of vulnerabilities. 

  Also places unusual constraints on the crypto. 



Security Design Principle 5: Stealth 

 

  Some aspects of WireGuard grew out of akernel 
rootkit project. 

  Should not respond to any unauthenticated 
packets. 

  Hinder scanners and service discovery. 

  Service only responds to packets with correct 
crypto. 

  Not chatty at all. 

  When there’s no data to be exchanged, both 
peers become silent. 



Security Design Principle 6: Solid 
Crypto 

 

  We make use of Noise Protocol Framework – noiseprotocol.org 

  WireGuard was involved early on with the design of Noise, ensuring it could do 
what we needed. 

  Custom written very specific implementation of Noise_IKpsk2 for the kernel. 

  Related in spirit to the Signal Protocol. 

  The usual list of modern desirable properties you’d want from an 
authenticated key exchange 

  Modern primitives: Curve25519, Blake2s, ChaCha20, Poly1305 

  Lack of cipher agility! (Opinionated.) 



Security Design Principle 6: Solid 
Crypto 

 

 

 Strong key agreement & authenticity 

  Key-compromise impersonation resistance 

  Unknown key-share attack resistance 

  Key secrecy 

  Forward secrecy 

  Session uniqueness 

  Identity hiding 

  Replay-attack prevention, while allowing for 
network packet reordering 



Crypto Designed for Kernel 

 Design goals of guarded memory safety, few allocations, etc have direct 
effect on cryptography used. 

  Ideally be 1-RTT. 

  Fast crypto primitives. 

  Clear division between slowpath for ECDH and fastpath for symmetric 
crypto. 

  Handshake in kernel space, instead of punted to userspace daemon like 
IKE/IPsec. 

  Allows for more efficient and less complex protocols. 

  Exploit interactions between handshake state and packet encryption state. 



Multicore Cryptography 

 

 Encryption and decryption of 
packets can be spread out to all  
cores in parallel. 

  Nonce/sequence number checking, 
netif_rx, and transmission must be 
done in serial order. 

  Requirement: fast for single flow 
traffic in addition to multiflow traffic. 
  Different from usual assumptions. 



Multicore Cryptography 

 

 Single queue, shared by all CPUs, rather than queue per CPU 

  No reliance on process scheduler, which tends to add latency when waiting for 
packets to complete 

  Serial transmission queue waits on ordered completion of parallel queue items 

  Using netif_receive_skb instead of netif_rx to push back on encryption queue 

  Bunching bundles of packets together to be encrypted on one CPU results 
in high performance gains 

  How to choose the size of the bundle? 



Multicore Cryptography 



Performance 



Performance 

 
  Being in kernel space means that it is fast and low latency. 

  No need to copy packets twice between user space and kernel space. 

  ChaCha20Poly1305 is extremely fast on nearly all hardware, and safe. 
  AES-NI is fast too, obviously, but as Intel and ARM vector instructions become 

wider and wider, ChaCha is handedly able to compete with AES-NI, and even 
perform better in some cases. 

  AES is exceedingly difficult to implement performantly and safely (no cache-timing 
attacks) without specialized hardware. 

  ChaCha20 can be implemented efficiently on nearly all general purpose processors. 

  Simple design of WireGuard means less overhead, and thus better 
performance. 
  Less code → Faster program? Not always, but in this case, certainly. 



Measurements  



Confluence of Principles → The Key 
Exchange 



The Key Exchange  

 

 The key exchange designed to keep our principles static allocations, 
guarded state, fixed length headers, and stealthiness. 

  In order for two peers to exchange data, they must first derive ephemeral 
symmetric crypto session keys from their static public keys. 

  Either side can reinitiate the handshake to derive new session keys. 

  So initiator and responder can “swap” roles. 

  Invalid handshake messages are ignored, maintaining stealth 



The Key Exchange: (Elliptic Curve) 
Diffie-Hellman Review 

private A = random()  

public A = derive_public(private A)  

 

private B = random()  

public B = derive_public(private B) 

 

ECDH(private A, public B) == ECDH(private 
B, public A) 


